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Abstract. The response of a metamaterial, consisting of a 3D lattice of lossy capacitively loaded metallic
loops is studied theoretically when it is inserted into a homogeneous harmonically varying magnetic field.
The current distribution is found by taking into account the magnetic coupling between any pair of loops
in the approximation of no retardation. It is shown that in a frequency range above its resonant frequency
the metamaterial behaves as a diamagnet expelling the applied magnetic field. As the resonant frequency
is approached the magnetic field is shown to be expelled not only from the volume of the metamaterial
but from a larger zone which in the vicinity of the resonant frequency takes the form of a sphere. In the
lossless case the radius of this exclusion sphere tends to infinity. In the presence of losses the maximum
radius is limited by the quality factor of the individual elements. The response of a single element is shown
to be analogous to that of a sphere of magnetic material, an analogy that leads to an alternative definition
of effective permeability.

PACS. 41.20.-q Applied classical electromagnetism – 75.20.-g Diamagnetism, paramagnetism, and
superparamagnetism – 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities,
critical exponents, etc.) – 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion,
dynamic scaling, etc.)

1 Introduction

The term metamaterial has only recently been coined. It
means that the properties (meaning essentially electro-
magnetic properties) of a particular material in a narrow
frequency range can be radically changed by the periodic
or random inclusion of small elements which have one or
more resonances within the required band. By small it is
meant that the dimensions of the element are small rela-
tive to the wavelength and the element may also be small
relative to the unit cell. The basic idea of including metal-
lic spheres [1], discs into a dielectric has been around for
at least half a century. The aim at the time was to change
the dielectric constant. The results achieved were modest,
interest soon waned in the subject. However if we look at
metamaterials as the descendants of periodic structures
then of course their previous history takes many volumes,
starting with X-ray diffraction by crystals and diffraction
gratings and ending up with a large variety of engineering
devices like artificial delay lines, slow wave structures in
microwave tubes, phased-array antennas, Bragg reflection
mirrors in lasers, etc. So if this kind of devices have been
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known for such a long time why was there a need to coin
a new term? The need arose due to predictions of entirely
new phenomena which come about when negative perme-
ability and negative permittivity can be simultaneously
realized in the same frequency band. The seminal paper
was written in 1968 by Veselago [2], largely forgotten until
recently revived by Smith et al. [3] and Pendry [4].

The concept of negative permittivity has often been
used to describe plasmas, whether in vacuum or in a metal,
below the plasma frequency. The physics is completely un-
derstood and the mathematical treatment, at least for de-
scribing basic phenomena, is quite straightforward. The
situation has been different concerning negative perme-
ability. It has been shown to be possible [5,6], but a rel-
atively simple realization came only five years ago, in a
paper by Pendry et al. [7].

By now negative permeability has been well estab-
lished [3,8] although there is no general consensus as yet
concerning its measurement nor is there an agreed recipe
how to calculate the effective magnetic permeability. The
definition by Gorkunov et al. [9] for example differs from
that of Pendry et al. [7].

Our aim in this paper is to approach the problem of
effective permeability from a different angle, from that
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of the diamagnetic properties of magnetic materials. The
relative permeability of diamagnets is known to vary be-
tween 1 and 0. It is zero when the magnetic flux is com-
pletely excluded. In a metamaterial, as we shall show, the
magnetic flux can be excluded from a volume larger than
the material itself, a phenomenon that can be referred to
as superdiamagnetism and which can also be interpreted
as due to the material having negative permeability.

In Section 2 we shall describe our mathematical model
for a 3D lattice of capacitively loaded loops. In Section 3
we shall investigate the effect of a single element and of a
3D metamaterial when immersed in a homogeneous har-
monically varying magnetic field. A magnetostatic anal-
ogy is discussed in Section 4 and conclusions are drawn in
Section 5.

2 Mathematical model

The metamaterial element chosen for its magnetic prop-
erties is a capacitively loaded metallic loop (Fig. 1). The
capacitance is represented by parallel plates although in
practice [10] it would take the form of a capacitor sol-
dered between the ends of the loop. The radius of the
loop is denoted by r0 and that of the wire by rw. The loop
impedance may be taken as that of a series LCR circuit

Z0 = j

(
ωL − 1

ωC

)
+ R, (1)

where L is the self-inductance, C is the capacitance, R
is the resistance and ω is the frequency of the varying
magnetic field. The resonant frequency of the circuit is
ω0 = 1/

√
LC.

Our metamaterial is assumed in the form of N iden-
tical elements making up a regular 3D lattice in which
the distance between the elements is much smaller than
the wavelength. We shall investigate the properties of this
structure when inserted into a homogeneous magnetic field
of amplitude H0 taken perpendicular to the plane of the
loops. Then each of the elements is excited by the same
voltage V = −jωH0πr2

0 due to the variation of the mag-
netic flux across the plane of the loop. In, the current in
loop n, will induce a voltage Zm,nIn in loop m, where
Zm,n = Zn,m is the mutual impedance between loops m
and n. It is related to the mutual inductance between two
loops Mm,n = Mn,m as Zm,n = jωMm,n.

The current in the mth loop is related to the other
currents by the relationship [11]

Z0Im +
∑
n�=m

Zm,nIn = V. (2)

The general relationship may also be written in matrix
form,

V = ZI, (3)

where V and I are N -dimensional vectors

V = (V1, V2, ..., Vm, ...VN ) ; I = (I1, I2, ..., Im, ...IN )
(4)

x

y
z

Fig. 1. A 3D lattice of capacitively loaded loops.

and Z is a symmetrical N × N matrix with non-diagonal
elements Zm,n and diagonal elements Z0. Equation (3) is
nothing else but the generalized Ohm’s law.

Knowing the current in each loop, the magnetic field
due to each current may be obtained in terms of elliptic
functions [12]. Total induced magnetic field is then ob-
tained by superimposing the effects of all currents.

Before we can start the calculations we need to decide
on the parameters. We shall take ω0/(2π) = 63.87 MHz,
the frequency of nuclear magnetic resonance at 1.5 tesla,
since one of the potential applications of metamaterials
is in Magnetic Resonance Imaging [13]. We shall further
assume that the loops of radius r0 = 10 mm are made
of copper wires having a diameter of 2 rw = 2 mm. The
self-inductance may then be determined from the well
known expression given by most books on the subject
of electromagnetism (see e.g. [14]). The value of the ca-
pacitance then follows from our choice of the resonant
frequency, ω0. The expression for the mutual inductance
between two loops is also available in the literature [12].
In the approximation that all dimensions are small rela-
tive to the wavelength and retardation is negligible it may
be obtained by one contour integration where the inte-
grand is an elliptic function. The resistance is calculated
from the given dimensions of the loop for a conductiv-
ity of 5.8 × 107 S/m taking the skin effect into account.
At our chosen frequency the circuit parameters are then,
L = 33 nH, C = 187 pF and R = 20.5 mΩ where the
capacitor is assumed to be lossless.

3 Results

3.1 Single loop

We shall start with the simplest case of a single lossless
loop in the x-y plane inserted into a harmonically varying
magnetic field directed along the z axis. In the absence of
the capacitor the current in the loop will create a magnetic
field opposing the applied field. A single loop is clearly a
diamagnet. Now let us put back the capacitor. At a fre-
quency at which the impedance is capacitive (i.e. below
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Fig. 2. Single loop. Streamlines of the total magnetic field for ω/ω0 = 2, 1.58, 1.1, 1.01 (a–d).

the resonant frequency) the current induced by the mag-
netic field will reinforce the applied magnetic field. When
the frequency is above the resonant frequency then the
loaded loop will again have an inductive impedance but
the magnitude of the current will now depend on how close
the frequency is to the resonant one. So in the vicinity
of the resonant frequency (but still above it) the current
will be large, therefore a larger diamagnetic effect can be
expected.

Let us now see the curves calculated from our theoret-
ical model for a single capacitively loaded loop of resonant
frequency ω0. Figures 2a–d show how the external field is
increasingly diverted away from the loop as the frequency
decreases from 4 ω0 to 1.01 ω0 where the zone of exclusion
may be seen to extend to several times the loop radius.
By exclusion we mean here that the original magnetic field
cannot penetrate that zone. It does not mean however that
there is no magnetic field inside the zone. Figures 3a and b
show both the internal and external fields for ω = 1.1 ω0

and 1.01 ω0. As the frequency gets nearer the resonant fre-
quency the exclusion zone takes the form of a sphere. The
physical picture that springs to mind is that the internal
field produced by the current acts as a kind of airbag which
prevents the penetration of the external flux. Our numeri-
cal calculations show that as the frequency approaches the
resonant frequency the radius of the exclusion sphere, re,
increases very fast. An approximate analytical expression
derived in the Appendix does indeed suggest that re → ∞
as ω → ω0.

Let us now include losses. As may be expected the size
of the exclusion zone will then be limited. According to
equation (10) of the Appendix the maximum radius will be
proportional to Q1/3 where Q, the quality factor, is equal
to ωL/R. This is a result that we could expect on physical
grounds. The quality factor is related to stored energy
which may be taken to be proportional to the volume of
the exclusion sphere.

The radius of the exclusion sphere at the optimum fre-
quency may also be obtained from numerical calculations
as demonstrated in Figures 4a–c. As Q declines by factors
of 8 from 6400 to 800 to 100 the radius of the sphere may
be seen to decrease by the cubic root of 8. We have to note
that, strictly speaking, it is no longer possible to draw flux
lines in the presence of losses because the magnetic field
becomes elliptically polarized so the magnetic field has not
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Fig. 3. Single loop. Streamlines of the total magnetic field for
ω/ω0 = 1.1 (a), 1.01 (b). Internal field is shown by dotted lines.

got a definite direction in a given point in space. However
for a large enough Q the geometrical representation would
still give good approximation.

3.2 3D lattice of loops

It has been convenient to investigate the single loop first
and draw some conclusions. We wish to show now that
similar conclusions apply when we take a chunk of meta-
material consisting of a 3D lattice of 3 by 3 by 8 loops. The
distance between the nearest loops is taken as a = 2.25 r0

in the horizontal plane and b = 0.25 r0 in the vertical
direction. For simplicity we shall neglect losses again. It
may be seen (Fig. 5) that varying the frequency the lat-
tice of loops shows the same behaviour as the single loop.
At high frequency ω = 2 ω0 the flux can penetrate the
structure which can be seen to be slightly diamagnetic
(Fig. 5a). As we reduce the frequency, the region from
which the external flux is excluded becomes again larger.
At ω = 0.78 ω0 the flux leakage through the structure is
stopped (Fig. 5b) and at ω = 0.67 ω0 the exclusion region
resembles a sphere again (Fig. 5c). The radius may be
seen to be large for ω = 0.65ω0 (Fig. 5d) and it tends to
infinity as we approach the resonant frequency. The main
difference from the single loop case is that the frequency
at which the exclusion sphere tends to infinity is now well
below the resonant frequency of the single loop due to the
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Fig. 4. Single loop. Streamlines of the total magnetic field in the presence of losses for Q = 6400, 800, 100 (a–c).
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Fig. 5. 3D lattice. Streamlines of the total magnetic field for ω/ω0 = 2, 0.78, 0.67, 0.65 (a–d).

interactions between the elements. Losses will of course
limit again the size of the exclusion region.

Varying the density or the shape of the metamaterial
will also influence the results. The coupling between two
loops on the same vertical axis is positive, the coupling
between two loops in the same horizontal plane is neg-
ative, the coupling between loops shifted both vertically
and horizontally with respect to each other is quite close to
zero. By varying the coupling strength between the loops
(e.g. by varying the lattice constant or the lattice con-
figuration) will lead to a shift of the resonant frequency
approaching which the metamaterial expels the external
flux more and more effectively.

4 Magnetostatic analogy: sphere
of permeability µr in an external field

It is well known, it may be found in most textbooks on
electromagnetic theory (see e.g. [14]), that a sphere of
magnetic material will partially exclude an externally ap-
plied static magnetic field when the relative permeability
is in the range 0 < µr < 1. When µr = 1 the magnetic
field is unaffected. When µr = 0.2 a considerable part of
the magnetic field is expelled (Fig. 6a) and at µr = 0 the
sphere is an ideal diamagnet, the magnetic field is com-
pletely expelled (Fig. 6b). The corresponding magnetic
fields inside and outside of the sphere are given by the

expressions (see e.g. [12])

Bin,z = µ0 H0
3µr

µr + 2

Bout,r = µ0 H0 cos θ

[
1 + 2

(
R0

r

)3
µr − 1
µr + 2

]

Bout,θ = µ0 H0 sin θ

[
−1 +

(
R0

r

)3
µr − 1
µr + 2

]
, (5)

where µ0 is the permeability of the vacuum, µ0 H0 is the
originally applied magnetic flux density, R0 is the radius of
the sphere, r, θ (θ measured from the z axis) are spherical
coordinates with the origin of the coordinate system being
located at the centre of the sphere.

As far as we know the above expressions from which
Figures 6a, b have been plotted had only been used for µr

positive or zero. We shall now enter uncharted territory
and assume that negative µr is also feasible and see what
the expressions will lead to. Taking µr = −1 the sphere
of magnetic material expels the external magnetic field
not only from its own volume but from a larger one as
may be seen in Figure 6c. As we further reduce µr to
−1.8 the exclusion sphere becomes even larger (Fig. 6d).
The radius of the exclusion sphere can be calculated from
equations (5) to yield

r3
e = 2

1 − µr

µr + 2
R3

0 (6)
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Fig. 6. A sphere of permeability µr in a magnetostatic field. Streamlines of the total magnetic field for µr = 0.2, 0, −1,
−1.8 (a–d).
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Fig. 7. A sphere of permeability µr in a magnetostatic field.
Streamlines of the total magnetic field for µr = −1 (a),
−1.8 (b). Internal field is shown by dotted lines.

and can be seen to become infinitely large at µr = −2.
Interestingly, the pattern of the internal magnetic field
(dotted lines in Figs. 7a, b) resembles very much that of
our capacitively loaded metamaterial (compare Figs. 7a, b
with Figs. 3a, b).

There is clearly a formal analogy between the response
of our metamaterial and that of a magnetic sphere to an
applied homogeneous magnetic field. It is then difficult
to resist the temptation to assign a frequency dependent
effective permeability, based on this analogy, to the meta-
material.

We could associate with a single loop negative perme-
ability between 0 and −2 as the radius of the exclusion
sphere increases. The analogy is less perfect for the 3D
lattice but as Figure 5 shows for a particular example
the exclusion sphere may also tend to infinity as the fre-
quency ω0 is approached. Hence, again, we could say that
the infinite exclusion sphere corresponds to an effective
permeability of −2.

There is no doubt that an effective permeability may
be defined, as it was done in the past, by the effect of
the metamaterial upon a transverse electromagnetic wave.
But that is not the only possible definition. We claim that
the definition should, or could, depend on the experimen-

tal arrangement. If the metamaterial is immersed in a ho-
mogeneous magnetic field and we are interested in its dia-
magnetic properties then the definition advanced in this
paper is an equally plausible one.

5 Conclusions

Our principal results show that a lossless metamaterial
can not only expel an external magnetic field (thus be-
having as a diamagnet) from the volume it occupies but,
in principle, it can expel an external magnetic field from
an arbitrarily large sphere. In the presence of losses the
radius of the sphere has been shown to be limited by the
quality factor of the elements. A formal analogy has also
been presented between the diamagnetic properties of the
metamaterial and that of a sphere of magnetic material in
a static magnetic field and this analogy has been used for
a definition of effective permeability.

All the analyses have been done in the frequency
range above the resonant frequency (whether that of a
single loop or of a metamaterial) which leads to dia-
magnetic properties. A similar study below the resonant
frequency would show paramagnetic properties, the pos-
sibility of concentrating an externally applied field where
the amount of concentration is limited only by the quality
factor of the elements. We hope to return to that problem
in a future publication.

The authors wish to thank V. Kalinin, M. Lapine, K.H.
Ringhofer and M. Shamonin for many interesting discussions.
E.S. acknowledges financial support by the Emmy-Noether
Programme of the German Research Council.

Appendix: Derivation of approximate
analytical expressions for the radius
of the exclusion sphere due to a single loop

Assuming that flux exclusion takes place far away from the
loop (i.e. the radius of the exclusion sphere is large relative
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to the loop radius) we may find the magnetic field from
the well known expression (see e.g. [14]) for a magnetic
dipole. We shall need only the radial component which is
given by

Hr =
I r2

0

2 r3
cos θ Hθ =

I r2
0

4 r3
sin θ, (7)

where the angle θ is measured from the z axis. We shall
now argue that the radius of the sphere is determined by
the point where the dipole’s radial field just cancels the
applied field. This happens at θ = 0 when Hr = H0. For
the lossless case the radius may then be obtained in the
form

r3
e =

π

2
r3
0

µ0 r0

L

ω2

ω2 − ω2
0

. (8)

Another way of determining re is to argue that the
flux that is expelled from the exclusion sphere must ap-
pear in the plane θ = π/2 as extra flux outside the exclu-
sion sphere. In other words re can be calculated from the
equation

µ0 H0 π r2
e = 2π µ0

∫ ∞

re

µ0 Hθ

(
θ =

π

2

)
r dr. (9)

It turns out that this latter definition leads to the same
expression as equation (8).

In the presence of losses the magnetic field will have
elliptic polarization, i.e. it is no longer possible to give the
magnetic field a definite direction in space. It would be
still possible to define re by the criterion that has led to
equation (9) for all values of Q (= ωL/R) and ω and find
numerically the frequency that maximizes the exclusion
zone. Since these calculations are rather laborious and lead
to no additional physical insight we shall not do them here.

We can however obtain the optimum frequency from a
simpler but rather rough argument that stipulates that it
is sufficient if H0 cancels the real part of Hr at θ = 0 (i.e.
to ignore the imaginary component at that point). This
will lead to the simple solution

r3
e,max =

π

4
r3
0

µ0 r0

L
Q. (10)
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